RISC-V: Enabling a New Era of Open Data-Centric Computing Architectures

Martin Fink, Chief Technology Officer
Western Digital Corporation

November 28, 2017
Forward-Looking Statements

Safe Harbor | Disclaimers

This presentation contains certain forward-looking statements that involve risks and uncertainties, including, but not limited to, statements regarding: the RISC-V Foundation and its initiatives; our contributions to and investments in the RISC-V ecosystem; the transition of our devices, platforms and systems to RISC-V architectures; shipments of RISC-V processor cores; our business strategy, growth opportunities and technology development efforts; market trends and data growth and its drivers. Forward-looking statements should not be read as a guarantee of future performance or results, and will not necessarily be accurate indications of the times at, or by, which such performance or results will be achieved, if at all. Forward-looking statements are subject to risks and uncertainties that could cause actual performance or results to differ materially from those expressed in or suggested by the forward-looking statements.

Additional key risks and uncertainties include the impact of continued uncertainty and volatility in global economic conditions; actions by competitors; difficulties associated with the integration of SanDisk and HGST into our company; business conditions; growth in our markets; and pricing trends and fluctuations in average selling prices. More information about the other risks and uncertainties that could affect our business are listed in our filings with the Securities and Exchange Commission (the "SEC") and available on the SEC’s website at www.sec.gov, including our most recently filed periodic report, to which your attention is directed. We do not undertake any obligation to publicly update or revise any forward-looking statement, whether as a result of new information, future developments or otherwise, except as otherwise required by law.
The Evolving Role of Data
Creating the data-driven economy

- Data as a record
- Data as communication
- Data as efficiency
- Data as currency

Richness

Value
Diverse and Connected Data Types

Tight coupling between Big Data and Fast Data
From General Purpose to Purpose Built
Architectures designed for Big Data, Fast Data applications

Big Data

Expanding applications and workloads

Fast Data

General purpose compute-centric architecture

- Solutions
- Systems
- Platforms
- Devices
General Purpose Architectures No Longer Sufficient

Big Data and Fast Data workloads exceed capability of uniform resource ratios

- Predetermined ratios of:
 - OS/App Processor
 - Specialty Processor
 - Memory
 - Storage
 - Interconnect

- Overhead of “PC” logic

- CPU-centric
General Purpose Architectures No Longer Sufficient

Big Data and Fast Data workloads exceed capability of uniform resource ratios

General Purpose Compute Architecture

- System fan
- Processor
- CPU fan
- Memory slots
- Buzzer
- Power
- Chipset
- Front panel
- SATA 1~4
- Jumpers
- S/PDIF jack
- VGA port
- DVI-D port
- USB ports
- LAN port
- Audio jacks
- S/PDIF-out
- PCIe x16 slot
- PCIe x1 slots
- Mini-card socket
- WLAN LED
- Front audio
- Battery
- USB 1~4
- USB 5~8
- Western Digital

General Purpose Transportation

©2017 Western Digital Corporation or its affiliates. All rights reserved.

#LetDataThrive
General Purpose Architectures No Longer Sufficient

Big Data and Fast Data workloads exceed capability of uniform resource ratios
General Purpose Architectures No Longer Sufficient

Big Data and Fast Data workloads exceed capability of uniform resource ratios
Workload Diversity Demands Diverse Technologies and Architectures

Big Data

Storage-centric architecture

Purpose-built data-centric architectures

Capacity-centric scale

HDD SSD

Storage

Memory

NVM DRAM SRAM

Interconnect

Memory Semantic Data Flow

Storage Semantic Data Flow

Compute

Storage SOC General Purpose CPU

GPU FPGA ASIC

Fast Data

Memory-centric architecture

Performance-centric scale
Data-Centric Environments

Big Data and Fast Data workloads need independent scaling of resources

Big Data
- Massive Storage
- Moderate Processing
- Analytics
- Machine Learning

Fast Data
- Large Memory
- Specialty Processing
- Event Correlation
- High-bandwidth interconnect
- Large Memory and Specialty Processing
- Blockchain
- Large Specialty Processing
Independent Scaling Demands Openness

Rapid adoption of new open source technologies and standards
Data-Centric Applications at the Edge

Environments require modular technologies and dense integration to optimize space, weight and power consumption
RISC-V Meets the Needs of Big Data and Fast Data

Provides a foundation for purpose-built, data-centric compute environments

Big Data

Move Compute to Data
- CPU for device, platform, system
- Minimize data movement
- Offload workload to “smart” storage
- Localized machine learning

Fast Data

Memory Centric Compute
- Highly scalable main memory
- Minimize data movement
- Heterogeneous processor support
- Scalable accelerators/offload engines

• Open and free
• Enables modular chip designs
• From 16 to 128-bit

• Scales from embedded to enterprise
• Direct integration with specialty accelerators
• Extensible ISA (for special purpose functions)
RISC-V Enables Purpose-Built Environments for Big Data and Fast Data Applications

- **Big Data**
 - Purpose-built data-centric architectures

- **Fast Data**
 - Memory-centric architecture

Storage-centric architecture
- HDD
- SSD
- Storage Semantic Data Flow

Memory
- NVM
- DRAM
- SRAM
- Memory Semantic Data Flow

Interconnect
- Storage SOC
- General Purpose CPU
- GPU
- FPGA
- ASIC
- RISC-V

Capacity-centric scale
Performance-centric scale

©2017 Western Digital Corporation or its affiliates. All rights reserved.

#LetDataThrive
RISC-V Meets the Needs of Big Data and Fast Data

Big Data
- Genomics

Fast Data
- Predictive Analytics

- Autonomous Machines

- Safety & Security

- Private Exchange

- Machine Learning

Western Digital
©2017 Western Digital Corporation or its affiliates. All rights reserved.
#LetDataThrive
Driving Momentum

Western Digital ships in excess of 1 Billion cores per year...and we expect to double that.
Accelerating the RISC-V Ecosystem

Western Digital to contribute one billion cores annually to fuel RISC-V

1. Support development of open source IP building blocks for the community

2. Actively partner and invest in the ecosystem

3. Accelerate development of purpose-built processors for a broad range of Big Data and Fast Data environments

4. Multi-year transition of Western Digital devices, platforms and systems to RISC-V purpose-built architectures
Innovating for a Data-Centric World

Big Data and Fast Data need purpose-built environments

Openness and ecosystem enable best-in-class innovation

Western Digital brings the momentum of >1B cores per year
Western Digital

We create environments for data to thrive