Second-generation Micro Actuator for Better Head-positioning Accuracy

To increase hard disk drive (HDD) data density, the size of bits – the 1s and 0s that represent the information stored on the disk – decreases and the spacing between their concentric tracks shrinks. As these dimensions shrink, it becomes more difficult to position the read-write head’s transducer element over the correct data track.

Outside disturbances, such as vibrations in the rack in the data center, can cause head-track misalignment. Dual-stage actuators (DSA) have already been implemented to position the read-write head with greater accuracy. Western Digital is now implementing Western Digital Micro Actuator (WDMA), a second-generation dual-stage actuator that enables even better head-positioning accuracy. Western Digital first implemented WDMA in the Ultrastar® DC HCS10 hard drive and has included WDMA in the mechanical design of subsequent products because better head-positioning accuracy delivers better performance, data integrity and overall drive reliability.

How it Works

WDMA structure and actuation are shown in Figure 1. Small multi-layer piezos are attached to the flexure. When differential voltage is applied to the WDMA, one piezo element expands as the other contracts. This action causes a slight rotational motion of the read-write head. Since the WDMA’s moving portion is so small with lighter mass compared with Milli Actuator (Milli), first-generation DSA, the WDMA element’s vibrational resonance frequency is much higher than that of Milli. As a result, the WDMA can rapidly and accurately position the head element over the correct data track.

The WDMA’s transfer function from the drive voltage to the head displacement compared with Milli is shown in Figure 2. Main resonance frequency of WDMA is much higher than that of Milli. This function increases servo bandwidth to a higher frequency range and improves head positioning accuracy.

Figure 2. DSA plant transfer function comparison

Figure 3 shows the schematic dual-stage servo block diagram with Voice Coil Motor (VCM) and Micro Actuator (MA). The block diagram consists of VCM, MA, VCM controller and MA controller. “Pv” and “Pm” are the plant of VCM and MA, respectively. The MA controller consists of compensator “Cm” and MA model “Pm0”. The signal “pes” represents the position-error signal, and “r” represents track runout. The “vpe” and “mpe” are respectively the position of VCM and MA. Then the overall position “pe” is the sum of “vpe” and “mpe.”
The total dual-stage open loop transfer function from “pes” to “pe” is:
\[\text{Go} = \text{PmCm} + (1 + \text{Pm0Cm}) \text{PvCv} \]

And the error rejection closed loop transfer function from “r” to “pes” is:
\[\text{Gerr} = \frac{1}{1 + \text{Go}0} = \frac{1}{(1 + \text{PmCm})(1 + \text{PvCv})} = \text{Gsnsvcm}\text{Gsnsma}, \text{ where} \ Pm0 = \text{Pm} \]

The total error rejection closed loop “Gerr” of the dual-stage servo system is the product of the VCM and MA loop sensitivities, “Gsnsvcm” and “Gsnsma”, respectively. Thus, the dual-stage servo control design can be decoupled into two independent controller designs: the VCM loop and the MA loop. Usually, the VCM open loop gain-crossover frequency is limited by the head-stack assembly and suspension resonance modes, and the dual-stage compensator is defined by the design of the MA compensators that attains additional attenuation of “Gsnsma”.

Conclusion

The better WDMA mechanical dynamics enlarges the DSA servo bandwidth and also improves the loop-shaping capability, which lead to a noticeable operational vibration robustness. Being able to keep the head over the data with better accuracy, especially in multi-drive systems where operational vibration is present, ultimately results in better performance, data integrity and overall drive reliability.

To learn more about Western Digital technologies and products, visit www.westerndigital.com.