
White Paper

Implementing SMR
Exploring options for adapting existing storage applications —
or deploying new ones — for use with SMR hard drives.

April 2024

White Paper

WHITE PAPER

 2

Introduction
As the pace of global data creation continues to accelerate, and as the
global demand for devices to store that data climbs as well, there is also
a proliferation in the types of applications and usage of that data. The
world’s data needs are less dominated by databases and corporate email
servers; newer usage models such as cloud storage, AI/ML training data
sets, and smart video are driving the growth. Below them, increasing needs
for nearline/cold/archival storage, whether merely to retain important data
or due to regulatory requirements making long-term storage necessary,
create workloads that may offer more variety in the storage devices
utilized to meet that need.

During this, system designers are also faced with cost pressures, with
one of the largest being total cost of ownership (TCO). They often face
fixed constraints such as a limited amount of power that a local utility can
supply to the datacenter, or limited square footage with which to install
storage, and it becomes clear that increasing storage density is one of the
key factors in reducing TCO. Higher storage density can both minimize the
amount of power (OpEx) and rack space / equipment (CapEx), making the
storage as economically efficient as possible.

The proliferation of new applications and the development of shingled
magnetic recording (SMR) HDDs can give system designers a new
method to increase storage density to meet their storage demand
while optimizing TCO. However, SMR HDDs have historically not been
a “drop-in” replacement for conventional HDDs, and applications have
required significant host software changes to support SMR. The software
ecosystem required time to mature and develop support for these changes
and is today now well-prepared to enable a much wider range of SMR-
compliant applications than in the past.

WHITE PAPER

 3

What is SMR?
HDDs write and read data via the “head” of the drive, flying above the
magnetic disk media. Each head will have two components; the write head
and the read head. The write head must develop a very strong magnetic
field to change the bits on the media, whereas the read head merely senses
the magnetic field as the head flies over the spinning media. Based on the
tasks each head to achieve its designed purpose, the write head happens
to be physically wider than the read head. This disparity is exploited to
introduce SMR.

In conventional magnetic recording (CMR), the data is organized in
discrete tracks, separated by narrow guard band between them. This
allows for random write and rewrite of every sector on the HDD, without
corrupting the existing written data on adjacent tracks. However, because
the write head is wider than the read head, this track is wider than it needs
to be to be successfully read.

This, plus the additional guard band needed between tracks, wastes space
and limits the areal density of the disk.

In SMR HDDs, these written tracks are overlapped. Because the track
does not need to be the full width of the write head, and because a guard
band is not needed, it reduces wasted space and allows for significantly
higher areal densities. But this introduces a constraint—data cannot be
written randomly without corrupting adjacent tracks. Much like the shingles
on a roof, to change the data on one track, the drive must rewrite all the
preceding tracks to change one sector.

WHITE PAPER

 4

This introduces a sequential write requirement. To ensure that changing
one sector doesn’t require a complete overwrite of the entire HDD, the drive
is divided into smaller zones such that only an individual zone needs to
be rewritten, as shown in Figure 1. However, this is still a time-consuming
process, so host systems must be optimized to avoid this to still be
performant. Note that read performance between CMR and SMR HDDs is
similar; it is only writes that are subject to these differences.

For decades, application software, operating systems, and file systems
have been built around the ability that an HDD can randomly write data.
In enterprise storage systems, to avoid confusion, SMR drives are assigned
a different device type than CMR drives. The SMR drive will identify itself
as a host-managed SMR (HM-SMR) drive, also known as a Zoned Block
Device. This alerts the host software stack that there are different rules for
writing to the drive than a conventional drive.

Each zone will have a sequential write pointer (SWP) which informs
the host where the next write in the zone must occur. Any attempted
commands to write to a different location than the SWP will be rejected
by the drive. Any read commands to an area of the zone beyond the SWP
will not return valid data. These rules must be understood at some, often
multiple, levels of the software stack to ensure that the storage system
behaves as expected.

The software ecosystem built to support SMR is now reaching a level of
maturity where HM-SMR drives can be used in an increasing number of
applications with fewer software engineering resources than previously
required. Some file systems now have native HM-SMR support and make the
integration process easier for applications that do not necessarily have access
patterns consistent with a sequential write hardware device.

Figure 1: Comparison of Conventional and SMR HDDs (Image source: ZonedStorage.io)

WHITE PAPER

 5

SMR-Aware and SMR-Friendly Applications
The unique sequential write constraints of SMR first require determining
whether the behavior of an application is suitable for SMR. With the
right application behavior, write performance can be near parity with
CMR storage. With the wrong application behavior, write performance
may be significantly degraded. The first step any designer must take
when determining whether to implement SMR is having a detailed
understanding of the application behavior and where (if necessary) it can
be changed.

With this, we can introduce the concept of an “SMR-Friendly” application.
SMR-Friendly applications are those where the write behavior of the
application as it currently exists is consistent with the write pattern
constraints of an SMR HDD. In general terms, an SMR-Friendly
application is one where the bulk of the writes to the drive are sequential.
It is an application where there is no requirement to regularly update
data in place, as SMR does not allow for overwrites of existing data in
place. In many cases, archival or cold storage applications are inherently
SMR-friendly.

Typically, this involves writing data once and keeping it safe for long
periods of time without any modification, and so do not require updating in
place. Other applications are file systems which use copy-on-write (COW)
behavior as these file systems by nature do not update data in place.
Certain applications which use versioning of files which are required to
keep the original and all history of changes would be similar, as the new
versions are written to fresh space on the drive.

By contrast, we can see applications that would be very unfriendly to SMR.
One example is any application relying on traditional RAID. RAID is reliant
on striping data across multiple disks and is not architected with the SMR
zone structure in mind. Another would be a typical database application.
In these applications, there is usually significant update of data in place.
Most traditional filesystems are not natively friendly to SMR, as they
allow for file updates in place instead of rewriting data to unused sectors.
Essentially, any application with significant update-in-place or random
write requirements will likely not be performant if modified to operate on
SMR HDDs.

Beyond SMR-Friendly applications, we can also introduce the category
of SMR-Aware applications. The primary difference is that an Aware
application will be written specifically with the SMR storage constraints
in mind and handle the SMR sequential write rules and data placement
manually. Existing applications will need to be rewritten to be Aware. This
is an involved software undertaking, but it will provide the most predictable
performance characteristics in the system.

WHITE PAPER

 6

An Aware application will most likely be a Friendly application, but a
Friendly application is not necessarily Aware. A Friendly application that
is not SMR-Aware does not know that the storage device is SMR and
must rely on the software stack underneath the application for following
the SMR write rules and handling data placement. This will be easier to
implement, but potentially less predictable in performance.

Examples of SMR-Friendly applications include, but are not limited
to, the following:
• Smart Video: Video recorders generally write large sequential data

streams, well-suited to SMR’s sequential write restriction. Most video
files are not intended to be overwritten in place. And when video is old
and is deleted to make room for new video, the system can free up
large blocks of free space which can be re-written sequentially.

• Archival/Cold Storage: Data that needs to be stored for long periods
of time for financial, government, or regulatory needs, or other archival
data that is merely needed to be kept indefinitely, is data that is
likely to be written once and then read back, whether regularly or
intermittently.

• Content Delivery Networks: Edge servers in these networks need
the ability to store frequently accessed content to serve to users
close to the users themselves but may only periodically update
the content on the servers as user preferences change. Because
the writes are infrequent, the application can typically work with
the SMR write performance even if the write pattern isn’t entirely
friendly.

• Artificial Intelligence / Machine Learning Training Datasets:
The training data for these algorithms is rarely changing (although
frequently growing) but needs to be re-read each time that the
algorithm itself is being tuned. Because this is a write-once read-
many (WORM) application, it will usually be SMR-Friendly.

• Cloud Document/Backup Services/File Storage Services
Supporting Versioning: In these applications, when a file is changed
the previous versions and all revision history must be retained, so the
changes can be written to a new location on the storage device not
requiring updates in place. Because they can be architected around
updating in place, these applications would be SMR-Friendly.

WHITE PAPER

 7

Implementation Options for SMR Applications
First and foremost, the Microsoft® Windows® operating
system does not currently support HM-SMR devices.
Windows-based applications will be unable to take
advantage of HM-SMR. Today the support for SMR
is only available within Linux® kernel based operating
systems (referred to as Linux for simplicity).
Beyond simply using Linux, however, the level of SMR
support is dependent on the kernel version. SMR support
was added to the Linux kernel starting with version 4.10.0,
with features and additional filesystem support added in
later versions. In addition, if using a Linux distribution, it will require that
support for HM-SMR (as described in the Linux kernel as “Zoned Block
Device Support”) is enabled at the time the kernel is compiled. If the kernel
version supports HM-SMR devices but it is not enabled, the kernel will
need to be recompiled with support enabled.
The ZonedStorage.io web site is a maintained resource where SMR
support information on Linux kernel, filesystems, and distributions can
be found.

Implementation for SMR-Aware Applications
If the application is SMR-Aware, there are two main paths: direct access,
or use of the zonefs file system.
Direct Access: An application may choose to manage data using the SMR
HDD directly without the help of a file system. Such direct access design
can enable improved performance and can be achieved using either
passthrough commands or regular IO system calls for systems that have a
Linux kernel with SMR support enabled.
With the passthrough approach, the application directly issues SCSI or ATA
commands to the HDD. Zones of HM-SMR drives are managed using a special
command in addition to the regular CMR drive command set. For SATA, this
is the Zoned Device ATA Command Set (ZAC), and for SCSI (SAS HDDs), it is
the Zoned Block Command Set (ZBC). Software libraries such as libzbc can
be helpful with simplifying the implementation of Aware applications using
passthrough access.
For systems using a Linux kernel supporting HM-SMR drives, regular
IO systems calls such as read() and write() can be used. The kernel also
provides a set of ioctl system calls to manage the zones of a HM-SMR
device. This approach generally leads to simpler application software
support for HM-SMR and can also be more efficient thanks to its
integration with the kernel block IO scheduler. Furthermore, the application
also gain the ability to combine SMR support with other features that the
HM-SMR drive may provide to improve quality of service. I/O priorities or
Command Duration Limits are examples of such features.

http://ZonedStorage.io

WHITE PAPER

 8

Direct access requires that the host software knows where the sequential
write pointer is for each zone and only issues writes to the allowed location.
In addition, if data within a zone becomes unnecessary to keep, and zones
become partially full of unnecessary data while retaining necessary data,
the host will need to handle “garbage collection” of the zones to free up
space if more writes must occur. Finally, without using a filesystem, the
host will be responsible for knowing what data is in each location, likely
by storing metadata about what is on the drives elsewhere. However,
“elsewhere” may be on the same drive, as HM-SMR drives typically
contain a single CMR area equal to 1% of the capacity of the HDD. This
CMR area is included to provide an area where random writes are allowed,
if needed by the application.
Direct access, because it does not use a filesystem, is the most challenging
way to implement SMR from a software perspective. When direct access
was the only viable method of implementing SMR, it explains why SMR
adoption was very low; the work involved was too much for most. However,
because it is dealing with the drive directly without the use of a filesystem,
it also gives the host the most control over everything that the application
needs to do to control the storage.
Direct access was introduced with the release of Linux kernel version
4.10.0.
zonefs: The introduction of the zonefs file system provides a file-based
exposure of the zone structure of the HM-SMR device to a host software.
However, this is not a typical POSIX-compliant file system as it does not
handle many of the aspects of writing files that a traditional file system
would offer. Thus, it is still incumbent on the application to be aware of the
SMR architecture and follow the rules of writing.

WHITE PAPER

WHITE PAPER

 9

In zonefs, each SMR zone is reported to the host as an individual file. The
files are named numerically, from 0 to the total number of SMR zones on
the disk. The host can write to each file, but only in append mode, using
ordinary file write commands. The use of append mode ensures that the
writes are sequential. When the file reaches the size of the zone, it cannot
accept any more writes. If the drive supports a CMR zone, this will also be
a file writeable by the host, but not subject to the append or sequential
write restrictions.

When a zone is needed to be reclaimed for new writes, it can be done by
using a truncate system call on the file representing that zone to set the
file size to zero. This effectively tells the zonefs filesystem to reset the
sequential write pointer to the start of the zone.

Implementation with zonefs, as shown, still requires that the application
be fully SMR-Aware. This would require the same level of data placement
management as required by direct access, such as metadata and garbage
collection. However, by providing a more common file-based way of
working with the zones, it is a simpler way to deal with the architecture,
requiring less host work. For applications such as Smart Video, where the
writes are sequential and typically already file-based, zonefs can simplify
the implementation process.

zonefs support was introduced with the release of the Linux kernel version 5.6.0.

Implementation for SMR-Friendly but not SMR-Aware
Applications
An application that writes in an SMR-Friendly manner but isn’t written as
SMR-Aware can still be used with SMR drives in many cases. Another
modern enterprise file system, btrfs (pronounced butter-eff-ess), has native
SMR support and some unique characteristics. Applications which can
utilize a modern kernel version and btrfs as the file system can handle the
SMR architecture with little or no changes to the application. In addition,
Linux provides a capability for usage of SMR with legacy filesystems,
however it is not recommended for anything but very specialized
applications and it will be covered below only for completeness.

btrfs: As mentioned, one of the key aspects to being SMR-Friendly is to
not update data in place. btrfs was originally designed prior to SMR to be
a copy-on-write (COW) file system. This means that when a file is modified,
btrfs does not write the changed file into the same location as the previous
file; it writes it to a new fresh location. This behavior naturally made btrfs
well-suited for adaptation to support SMR. With other modifications
(primarily relating to how the filesystem superblocks and block allocation
are handled to ensure sequential writes), btrfs introduced official zoned
device / SMR support as of Linux kernel version 5.12. Having native filesystem
support for SMR allows a much wider number of applications to support
SMR drives.

WHITE PAPER

 10

Applications that rely on a filesystem therefore can run atop btrfs without
modification. The application does not need to know the underlying
structure of the drive. That said, the inherent rules relating to writing to
SMR drives may mean that application behavior needs to be tweaked to
ensure consistent performance. In addition, certain filesystem features,
most notably software RAID, are not currently supported on zoned/
SMR devices.

When implementing an application that is not SMR-Aware atop btrfs,
the biggest question a designer will typically have is “does it perform
adequately to requirements?” For an application that is largely archival or
cold storage, a WORM application, etc, large block sequential access with
deletion (such as smart video), there is unlikely to be significant change
relative to CMR. But for an application that does require more “randomized”
writes, it is less clear. Here, one area of critical need is to understand that
an SMR application atop btrfs may perform on writes much differently
when the drive is nearly empty vs when it is nearly full.

This is due, much like an SSD, to the need to perform garbage collection.
Since this must be done by the filesystem and the application is not
aware of this need, it could impact performance. It is incumbent upon the
system designer to ensure that test cases for the application take this
into account.

To use btrfs, a minimum of kernel version 5.12, with Zoned Block Device
Support enabled, is required. Most applications would likely prefer a more
recent kernel version, as various early bug fixes and performance tweaks
during the early deployment of SMR support have made SMR support
more production-ready.

WHITE PAPER

 11

Device mapper: With the introduction of kernel version 4.13, Linux added
support within the device mapper subsystem for two new capabilities,
dm-linear and dm-zoned. These effectively allow both the application AND
a legacy filesystem to operate on an SMR drive without being SMR-Aware.
Thus, if an application cannot use btrfs, it may still be possible to support
an SMR drive.

DISCLAIMER: The use of dm-zoned can have radically unpredictable
write performance. The target applications which would use SMR in
this way in any sort of production enterprise/datacenter environment
is very narrow. As such, it will not be covered in detail and if additional
information is needed, a reader should seek the zonedstorage.io web site
for more information. Usage is not recommended unless the application
characteristics and the performance implications are well understood by
the system designer.

Data Redundancy/Resiliency When Implementing SMR
In addition to merely implementing an application that is either SMR-
Aware or using a filesystem like btrfs, there are other needs that a system
designer must address. One of the most common at the enterprise/
datacenter scale is how to handle data redundancy/resiliency. If data is
important, you need either multiple copies or self-correcting architectures
that protect against hardware failure.

As already stated, traditional RAID is not suited to SMR, as it stripes data
in fixed locations across sets of disks requiring update-in-place if any data
changes. And while btrfs supports SMR, in current implementations the
btrfs RAID capabilities do not support SMR. However, SMR’s advantages are
most well seen in the large-scale datacenter deployments where TCO drives
decision-making. In these large-scale deployments, traditional RAID is not in
common use, and data resiliency is more typically handled with replication,
erasure coding, or both. Both are much more SMR-Friendly than RAID.

Replication is simple—distributing copies of the data across multiple
drives (and potentially multiple geographic locations) looks the same on
SMR as it would on CMR. Thus, replication on SMR introduces nothing
new relative to CMR.

Erasure coding is more complex. The advantage of most erasure coding
schemes is that the data is sharded across drives without a fixed stripe
or requiring homogenous drive sizes and configurations. There is no
requirement for update-in-place. All that is required is that there are
enough drives with enough free available space to write every shard. It is
very much a “copy on write” architecture for data resiliency. However, this
can then also cause previously written data to be invalidated, requiring
garbage collection that can impact performance. The erasure coding
scheme itself, or the filesystem upon which it sits (if used), must be
SMR-Aware to handle these garbage collection tasks.

WHITE PAPER

 12

So much as a system designer must really understand their application
workload if employing SMR, the system designer must also understand
and test the performance implications of any complexities introduced
by erasure coding. Most importantly, they must understand that the
performance characteristics of a mostly-utilized drive pool may be very
different than a mostly-empty drive pool.

Validation/Qualification Strategies When Implementing SMR
When validation or qualifying HDDs for use in a system, many customers
rely on tried-and-true benchmarks to understand drive performance, and
understand their own workloads well enough that they can predict how a
CMR drive will respond in the application as long as it meets the specified
targets in their benchmarks.

When introducing SMR into the picture, the situation changes significantly.
While benchmarking software exists for SMR drives, it becomes less clear
how drive benchmarking results will map to application performance.
Most applications with any level of “randomization” to the write patterns
will require garbage collection. Benchmarks of sequential write speeds
and random read IOPS are important, but it doesn’t easily tell you how
garbage collection of partially-utilized zones will impact performance.
Some systems could see near-parity to CMR performance during garbage
collection, or could see wild aberrations, once the storage is utilized
enough that garbage collection routines are invoked.
SMR application performance is state-based, meaning that the performance
depends on the state of information already on the storage device. To
truly understand application performance, the application should be

WHITE PAPER

“stress-tested” against various initial states, up to and including not
simply testing mostly-full storage, but testing storage after multiple
rounds of write / delete / garbage collection operations occur. In this, it
is similar to SSD performance testing, which often requires the device to
be preconditioned before testing. But for host-managed SMR, it is more
that the application and the filesystem should be used extensively to
understand performance changes that may occur in the various states
the application will encounter in the storage pool.
As with most questions involving SMR implementation, validating
performance and qualifying drives is highly application-dependent, and
the system designer must fully understand the application and its needs
to determine which benchmarks are relevant and what testing must be
adapted from previous systems to ensure that the storage will meet the
application performance requirements.

Conclusion
Implementing SMR HDDs into a storage application is not a trivial change.
However, the value of increased storage density and improved TCO
make it a compelling option. While in the past, the software ecosystem
support wasn’t mature enough for all but the most resourced companies to
handle, modern software opens this up to more applications and potentially
many which can be “drop in” replacements or close to it for CMR HDDs.

Learn More
Learn more about Zoned Storage Devices
https://zonedstorage.io/
Ultrastar DC HC680 Data Center HDD Data Sheet
https://www.westerndigital.com/tools/
documentRequestHandler?docPath=/content/dam/doc-library/en_us/
assets/public/western-digital/product/data-center-drives/ultrastar-dc-
hc600-series/data-sheet-ultrastar-dc-hc680.pdf
Shingled Magnetic Recording (SMR) HDD Technology
https://documents.westerndigital.com/content/dam/doc-library/en_us/
assets/public/western-digital/collateral/white-paper/white-paper-shingled-
magnetic-recording-hdd-technology.pdf
Zoned Storage: Higher Capacities, Lower TCO & Improved QoS
https://www.westerndigital.com/company/innovation/zoned-storage
Technology Brief: UltraSMR
https://documents.westerndigital.com/content/dam/doc-library/en_us/
assets/public/western-digital/collateral/tech-brief/tech-brief-ultrasmr-
technology.pdf

© 2024 Western Digital Corporation or its affiliates. All rights reserved.

Western Digital, the Western Digital design, and the Western Digital logo are registered trademarks or trademarks of Western Digital Corporation or its affiliates
in the US and/or other countries. Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries. Microsoft and Windows are trademarks of
the Microsoft group of companies. All other marks are the property of their respective owners.

5601 Great Oaks Parkway
San Jose, CA 95119, USA
www.westerndigital.com

April 2024

