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Introduction
The Replay Protected Memory Block (RPMB) protocol, initially defined in JESD84-A441, is 
a security protocol that provides the ability for a host to store data in a specific memory 
area of the device in an authenticated and replay-protected manner. 

An authentication key is programmed into the Universal Flash Storage (UFS) device 
memory in a secure environment, such as OEM production. This key is used to 
authenticate read and write accesses made to RPMB with a Message Authentication Code 
(MAC). Further, count registers and nonces are used to protect against replay attacks.

The RPMB is contained in its own well-known logical unit that can be divided into multiple 
regions, each with associated cryptographically significant parameters (authentication 
key, write counter, etc...). Each RPMB region can process a single authenticated operation 
at any given point in time.

In this document, we describe two vulnerabilities in an a priori reasonable 
implementations of the host side of the protocol and give possible mitigation strategies.

 
Relevant Use Cases for RPMB

Software Downgrade Protection
Consider a scenario in which a manufacturer must push several software updates to a 
device (such as a phone, a car, etc.). During the initial update, the new software image 
is written into the device’s main area while the information about the software release 
version is stored in the RPMB.

Then, imagine that the manufacturer discovers that this version has a security breach 
or a safety bug. The manufacturer issues another software update to fix the problem. 
As before, the new software image is written into the device’s main area and updated 
version information is stored in the RPMB. 

But a hacker may use this same mechanism to downgrade the software on a user’s device  
and take advantage of security breaches or bugs within previously released versions. 
They may try to mimic the procedure that the manufacturer used when pushing out the 
upgrade — but the hacker would actually push out an earlier, compromised version of the 
application or operating system. 

Software using RPMB to protect itself from a downgrade attack would check for a new, 
updated version number during the upgrade procedure. If the new version number is 
lower than the one already present in RPMB, the installer would reject the update. Due 
to the nature of RPMB, there should be no way for an attacker to change the software 
version information stored in the RPMB, as that would require access to the secret key.

Brute-force Protection
In this example, RPMB can be used to ensure that only an authorized individual can unlock 
a device (such as a phone, car, or computer).

First, the user records a PIN code, fingerprint, or swipe sequence to unlock the device. 
Subsequently, whenever an attempt to unlock the device occurs, the time of each 
attempt is recorded in the RPMB. If too many attempts are made within a specified period 
of time, software controlling the lock will prevent further attempts to unlock the device 
for a set period of time. If a hacker tries to unlock the device — even with the use of 
automated tools that would try to inject every possible PIN code until the correct one is 
found — the hacker will be stopped when the specified number of incorrect unlock trials 
within a specified period is reached. The hacker cannot override the tracking of unlock 
attempts because the information about the attempts is stored in the RPMB. Unless 
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the hacker stumbles upon the right PIN in the first few attempts, it 
becomes nearly impossible for someone to unlock the device without 
the pin.

Updateable Secure Boot
Prevention of an unauthorized (hacked) code from running on a 
device begins with an assurance that the very first piece of code read 
originates from the storage device for a legitimate execute. This initial 
code — the bootloader — is located on the device boot partition, 
which must be write-protected from malware modification.

A permanent write-protect mechanism offers users a reliable way to 
protect the boot area. Additionally, it also precludes manufacturers 
from updating those areas, if necessary. The secured write-
protect feature ensures that every change to the write protection 
configuration itself must be authenticated by using the RPMB secret 
key. The secured write-protect mechanism is primarily used to protect 
the boot code, or other sensitive data on the device from changes or 
deletion by unauthorized applications.

Secure Updateable State for TEE
Trusted Execution Environments (TEE) can use the RPMB feature to 
provide replay-protected non-volatile storage areas for applications.

In order for the application to use the RPMB secure storage, the 
application only needs the normal-world kernel to relay RPMB requests 
to the storage device, but does not otherwise need to trust the 
normal world kernel.

 

Description of Vulnerabilities
Two attacks on the RPMB protocol have been identified. They allow 
the adversary to make the legitimate host user believe that the state 
of the RPMB is different from what it truly is.

We will give a generic description of these two scenarios, as well as 
identify their impacts on various identified use cases for RPMB. With 
primary focus to RPMB protocols that are relevant and describe the 
attack at a somewhat abstract level. However, one can easily translate 
the attacks to fully conform with the RPMB specification. In particular, 
though we don’t explicitly specify all the components in the attack 
messages, we state the relevant ones and the rest can be worked out.

Note, the description focuses on two commands: Authenticated data 
write request, and Authenticated data read request. The described 
attacks apply equally if Authenticated data read/write requests are 
replaced by Secure Write Protect Configuration Block read/write 
requests. 

A list of Common Vulnerabilities and Exposures (CVE) issued in this 
regard can be found on Western Digital’s website.

 

Scenario One
In the first attack scenario, the host is led to believe that the data 
write failed.

Initially the host submits an authenticated data write request (1) to 
the device. The request, REQ , includes the write counter value Ct, 
the data to be written, the address Adr, and a MAC M on these values. 
The adversary intercepts this request, memorizes it, and (2) forwards 
a modified version REQ* that will fail the MAC verification (thus the 
counter value is not incremented). We call REQ an uncommitted write 
because the attacker has prevented it from being committed to the 
RPMB. 

As the MAC verification failed, the device responds with a failure (3) 
to the host. This could lead the host to believe that the request REQ 
failed and the memory contents at Adr have not been updated.

Later, the adversary forwards the initial request REQ (4) to the device 
and intercepts the successful status sent back by the device (thus 
committing an uncommitted write). As a result, the memory contents 
at Adr do get updated but the host does not get any information 
about it.
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Scenario Two
In the second attack scenario, the host is led to believe  that a piece of 
data A was written. However, it was another piece of data B that was 
written.

The host issues an authenticated data write request (1) to the device. 
The request, REQ1, includes the write counter value Ct, the data to 
be written Data1, the address Adr, and a MAC M1 on these values. The 
adversary intercepts this request, memorizes it and causes the host to 
lose state (2) – by cutting off power for instance. Thus, REQ1 stays with 
the attacker as an uncommitted write.

When the host comes back (3), the host may then attempt to issue an 
authenticated data write request to the same location but with some 
different data. Suppose it now issues a new request, REQ2, which 
includes the counter Ct and the address Adr but a different piece 
of data Data2 (4). The adversary intercepts this new request and (5) 
forwards the old request REQ1 to the device instead. 

Note, REQ1 is still a valid request because the counter value has not 
changed. As a result, Data1 gets written to the device. When the host (6) 
receives the successful response back, it would assume that REQ2 was 
successfully executed and Data2 has been written at Adr. 

 
 
Impact of Attack
In the second attack scenario, the host was led to believe that a piece 
of data A was written. However, it was another piece of data B that was 
written.

Software Version Downgrade Attack Prevention

When two successive updates to the software are issued, an adversary 
may be able to use Attack 2 to cause the system to believe that the 
RPMB holds the latest version number while it actually holds the 
penultimate one. The adversary may then be able to cause the system 
to downgrade to this penultimate software version and to maliciously 
use the associated vulnerability for far longer than it should have.

Brute-force Attack Prevention

In this use scenario, the attacks described in this document do 
not appear to provide any significant benefit to an adversary for a 
reasonably implemented host software stack.

Updateable Secure Boot

If two successive updates to the boot code are attempted, with 
the second one issued to mitigate a security vulnerability present in 
the first one, the adversary may be able to cause the issuing host to 
believe that the later version is installed when only the former one 
was.

Secure Updateable State for TEE

There are a variety of use cases one can envision for an application 
running in a TEE. In nearly all of them, it is important that the 
application be able to trust the TEE storage to correctly write the 
data that was sent, and not older uncommitted write.

Depending on the design of the file system the impact of the 
vulnerability may be narrower or wider-ranging. Specifically, a non-
journaling file system which could already reach an inconsistent state 
when faced with sudden power loss will obviously be vulnerable. 

 
Proposed Mitigations

Consistency Model of RPMB
In the traditional shared-memory model of distributed systems, the 
single weakest notion of register practically useful for building bigger 
systems is a safe register. At the very least, a safe register needs to 
provide confidence the property that read operations not concurrent 
with write operations should return the most recent successfully 
written value.

The previously described attacks show that the RPMB, as seen from 
the perspective of the legitimate user, does not even provide a safe 
register. Indeed, Attack 2 in particular, shows a scenario where a 
subsequent read would return a different value from the most recently 
written one.

In this section, we will provide a mechanism to address the two 
previously described vulnerabilities and ensure that RPMB at each 
address can be treated as a safe register. 

Furthermore, for most applications, safety is typically an insufficient 
property and stronger notions like regularity or atomicity/
linearizability are required. The proposed mitigation technique will 
actually ensure regularity as well. For a system in need of atomicity 
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and eventual termination of writes, standard file system consistency 
techniques – two stage logging, journaling etc.. - need to be used by 
the host system together with the proposed mitigation.

Initialization Sequence
We know that a write request contains a counter value and a MAC value 
(among other things). The device checks that the counter value matches 
with the current write counter, and that the MAC is valid. If both checks 
pass, it increments the counter value and includes the new value in the 
response message. If either of the checks fail, then the old counter value 
is included.

We will use the counter value in the response messages to check 
whether some write request was executed successfully or not.

We propose that an initialization sequence be run every time the host 
recovers from a loss of state. The steps of the sequence are described 
below. First, the host reads the value of the write counter; let's say it’s 
Ct. Then, it runs a loop that tries to write some data to a dummy block 
with counter value Ct. The loop runs until the host sees a value of Ct+1 in 
the response message.

[1] Read the write counter value (say it’s Ct)

[2] DO

[3] Authenticated-Data-Write of some data to the dummy 

    block with counter value Ct

[4] WHILE (counter value in response NOT EQUAL TO Ct + 1

The dummy block could be any block that is not normally used for 
reading and writing. We later discuss what steps to take if such a block 
is not available.

At the start of the initialization sequence, the attacker may have 
uncommitted writes with counter value Ct or less. It could use them 
later to launch attacks like the second one above. The purpose of the 
initialization sequence is to invalidate the uncommitted writes by 
incrementing the counter. Once the counter is incremented, attacker 
cannot commit any of the uncommitted writes it has, thus preventing 
problems later.

The loop above terminates when the host receives a response 
message with an incremented counter value, so some write request 
must have successfully executed. This write request may not be one 
of the requests generated in the loop; it could even be one of the 
uncommitted writes that the attacker holds. Either way, all the other 
uncommitted writes of the attacker become invalid.

Once the initialization sequence is complete, it is safe to issue reads and 

writes to the RPMB.

Reading and Writing
As the adversary does not have any valid uncommitted writes left, 
reading is safe.

In order to write data D to a given address Adr, the following loop 
should be executed, assuming the write counter value is Ct*.

[1] DO

[2] Authenticated-Data-Write of some data to the dummy 

    block with counter value Ct

[3] WHILE (counter value in response NOT EQUAL TO Ct + 1

Note that the only write requests generated by the host with 
counter value Ct* are the ones that write D to Adr. Thus, if the 
counter value is incremented in the response message, it could 
only be because one of these write requests have been executed 
successfully. This means that D has been written to Adr.

The attacker could certainly interfere with the write process. It 
could block a write request with Ct* from being executed, it could 
try to commit one of its uncommitted writes, it could block the 
response messages, etc. However, if a response message indeed 
contains Ct*+1, then only a write request generated in the loop 
could have successfully executed.

Attacks Reconsidered
Let us briefly see how the proposed mitigation strategy prevents 
the two attacks we described earlier. 

In the first attack, when the host gets a failure response from the 
device, it assumes that the write attempt has failed. With the 
new write procedure we have, the host will see that the response 
message still contains the old counter value, so it will continue to 
generate new write requests. The host will give up only when a 
response message contains the new counter value, which ensures 
that the write attempt has succeeded.

In the second attack, the host begins writing to Adr right after it 
comes back up (recovers state). This allows the attacker to commit 
an old write (REQ1) with some different data without the host 
noticing it. In the proposed mitigation, the host will first run the 
initialization sequence before it does any actual reading or writing. 
Once the initialization sequence is complete, the attacker cannot 
commit any of the uncommitted writes from before. The host will 
try to write Data2 to Adr now with the help of the loop described 
earlier, which ensures that Adr is populated with Data2 only.

Additional Concerns
Every time the host recovers state, like after a power failure, it must 
run the initialization sequence before it attempts to do any real 
reading or writing. 

Once the initialization sequence is complete, writes should be 
carried out one at a time. A new write operation should start only 
after the previous one has finished. If multiple writes are carried out 
at the same time (for the same RPMB region), then the attacker may 
be able to launch some attacks.
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Frequently Asked Questions
Would the proposed mitigation lead to a significant increase in the number of times the write counter is incremented?

An adversary could cause the write counter to be incremented many times by forcing the initialization sequence to happen over and over 
again. The counter, however, is a 32-bit value, so it can easily accommodate the extra write operations.

What should I do if no dummy-block is available?

If a dummy-block is unavailable, it is possible to modify the mitigation strategy to re-use an existing block (say B*) for the initialization 
sequence. Instead of writing some data to B* directly, the host must first read from it (say the read data is D*). Then, the host should try to 
write D* to B* in the same manner as an arbitrary value is written to the dummy-block in the mitigation strategy. After the loop terminates, the 
host must perform one additional step. It should read B* to make sure that it still contains D* (since an attacker could commit an uncommitted 
write from before with some different data). If it doesn’t, the host should take appropriate steps.

When should the initialization sequence be run?

The initialization sequence should be run whenever the host software may have lost state. It is necessary to run the initialization sequence to 
guarantee that all adversary-held uncommitted writes are invalidated. Loss of state may happen for a variety of reasons like power-cycle, soft 
reboot, software restart, etc.
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