
WHITE PAPER

Replay Protected
Memory Block (RPMB) -
Protocol Vulnerabilities

WHITE PAPER NOVEMBER 2020

WHITE PAPER

2

Contents
Introduction ……………………………………………………… 2

Relevant Use Cases for RPMP … ………………………… 2

Software Downgrade Protection………………… 2

Brute-force Protection………………………………… 2

Updateable Secure Boot……………………………… 3

Secure Updateable State… ………………………… 3

Description of Vulnerabilities……………………………… 3

Scenario One……………………………………………… 3

Scenario Two… …………………………………………… 4

Impact of Attack… ……………………………………… 4

Proposed Mitigations … …………………………………… 4

Consistency Model of RPMB………………………… 5

Initialization Sequence………………………………… 5

Reading and Writing… ………………………………… 5

Attacks Reconsidered… ……………………………… 5

Additional Points… ……………………………………… 5

Frequently Asked Questions (FAQ) … ……………… 6

Resources ………………………………………………………… 6

Introduction
The Replay Protected Memory Block (RPMB) protocol, initially defined in JESD84-A441, is
a security protocol that provides the ability for a host to store data in a specific memory
area of the device in an authenticated and replay-protected manner.

An authentication key is programmed into the Universal Flash Storage (UFS) device
memory in a secure environment, such as OEM production. This key is used to
authenticate read and write accesses made to RPMB with a Message Authentication Code
(MAC). Further, count registers and nonces are used to protect against replay attacks.

The RPMB is contained in its own well-known logical unit that can be divided into multiple
regions, each with associated cryptographically significant parameters (authentication
key, write counter, etc...). Each RPMB region can process a single authenticated operation
at any given point in time.

In this document, we describe two vulnerabilities in an a priori reasonable
implementations of the host side of the protocol and give possible mitigation strategies.

Relevant Use Cases for RPMB

Software Downgrade Protection
Consider a scenario in which a manufacturer must push several software updates to a
device (such as a phone, a car, etc.). During the initial update, the new software image
is written into the device’s main area while the information about the software release
version is stored in the RPMB.

Then, imagine that the manufacturer discovers that this version has a security breach
or a safety bug. The manufacturer issues another software update to fix the problem.
As before, the new software image is written into the device’s main area and updated
version information is stored in the RPMB.

But a hacker may use this same mechanism to downgrade the software on a user’s device
and take advantage of security breaches or bugs within previously released versions.
They may try to mimic the procedure that the manufacturer used when pushing out the
upgrade — but the hacker would actually push out an earlier, compromised version of the
application or operating system.

Software using RPMB to protect itself from a downgrade attack would check for a new,
updated version number during the upgrade procedure. If the new version number is
lower than the one already present in RPMB, the installer would reject the update. Due
to the nature of RPMB, there should be no way for an attacker to change the software
version information stored in the RPMB, as that would require access to the secret key.

Brute-force Protection
In this example, RPMB can be used to ensure that only an authorized individual can unlock
a device (such as a phone, car, or computer).

First, the user records a PIN code, fingerprint, or swipe sequence to unlock the device.
Subsequently, whenever an attempt to unlock the device occurs, the time of each
attempt is recorded in the RPMB. If too many attempts are made within a specified period
of time, software controlling the lock will prevent further attempts to unlock the device
for a set period of time. If a hacker tries to unlock the device — even with the use of
automated tools that would try to inject every possible PIN code until the correct one is
found — the hacker will be stopped when the specified number of incorrect unlock trials
within a specified period is reached. The hacker cannot override the tracking of unlock
attempts because the information about the attempts is stored in the RPMB. Unless

Replay Protected Memory Block (RPMB) - Protocol Vulnerabilities

WHITE PAPER

 Replay Protected Memory Block (RPMB) - Protocol Vulnerabilities 3

the hacker stumbles upon the right PIN in the first few attempts, it
becomes nearly impossible for someone to unlock the device without
the pin.

Updateable Secure Boot
Prevention of an unauthorized (hacked) code from running on a
device begins with an assurance that the very first piece of code read
originates from the storage device for a legitimate execute. This initial
code — the bootloader — is located on the device boot partition,
which must be write-protected from malware modification.

A permanent write-protect mechanism offers users a reliable way to
protect the boot area. Additionally, it also precludes manufacturers
from updating those areas, if necessary. The secured write-
protect feature ensures that every change to the write protection
configuration itself must be authenticated by using the RPMB secret
key. The secured write-protect mechanism is primarily used to protect
the boot code, or other sensitive data on the device from changes or
deletion by unauthorized applications.

Secure Updateable State for TEE
Trusted Execution Environments (TEE) can use the RPMB feature to
provide replay-protected non-volatile storage areas for applications.

In order for the application to use the RPMB secure storage, the
application only needs the normal-world kernel to relay RPMB requests
to the storage device, but does not otherwise need to trust the
normal world kernel.

Description of Vulnerabilities
Two attacks on the RPMB protocol have been identified. They allow
the adversary to make the legitimate host user believe that the state
of the RPMB is different from what it truly is.

We will give a generic description of these two scenarios, as well as
identify their impacts on various identified use cases for RPMB. With
primary focus to RPMB protocols that are relevant and describe the
attack at a somewhat abstract level. However, one can easily translate
the attacks to fully conform with the RPMB specification. In particular,
though we don’t explicitly specify all the components in the attack
messages, we state the relevant ones and the rest can be worked out.

Note, the description focuses on two commands: Authenticated data
write request, and Authenticated data read request. The described
attacks apply equally if Authenticated data read/write requests are
replaced by Secure Write Protect Configuration Block read/write
requests.

A list of Common Vulnerabilities and Exposures (CVE) issued in this
regard can be found on Western Digital’s website.

Scenario One
In the first attack scenario, the host is led to believe that the data
write failed.

Initially the host submits an authenticated data write request (1) to
the device. The request, REQ , includes the write counter value Ct,
the data to be written, the address Adr, and a MAC M on these values.
The adversary intercepts this request, memorizes it, and (2) forwards
a modified version REQ* that will fail the MAC verification (thus the
counter value is not incremented). We call REQ an uncommitted write
because the attacker has prevented it from being committed to the
RPMB.

As the MAC verification failed, the device responds with a failure (3)
to the host. This could lead the host to believe that the request REQ
failed and the memory contents at Adr have not been updated.

Later, the adversary forwards the initial request REQ (4) to the device
and intercepts the successful status sent back by the device (thus
committing an uncommitted write). As a result, the memory contents
at Adr do get updated but the host does not get any information
about it.

WHITE PAPER

 Replay Protected Memory Block (RPMB) - Protocol Vulnerabilities 4

Scenario Two
In the second attack scenario, the host is led to believe that a piece of
data A was written. However, it was another piece of data B that was
written.

The host issues an authenticated data write request (1) to the device.
The request, REQ1, includes the write counter value Ct, the data to
be written Data1, the address Adr, and a MAC M1 on these values. The
adversary intercepts this request, memorizes it and causes the host to
lose state (2) – by cutting off power for instance. Thus, REQ1 stays with
the attacker as an uncommitted write.

When the host comes back (3), the host may then attempt to issue an
authenticated data write request to the same location but with some
different data. Suppose it now issues a new request, REQ2, which
includes the counter Ct and the address Adr but a different piece
of data Data2 (4). The adversary intercepts this new request and (5)
forwards the old request REQ1 to the device instead.

Note, REQ1 is still a valid request because the counter value has not
changed. As a result, Data1 gets written to the device. When the host (6)
receives the successful response back, it would assume that REQ2 was
successfully executed and Data2 has been written at Adr.

Impact of Attack
In the second attack scenario, the host was led to believe that a piece
of data A was written. However, it was another piece of data B that was
written.

Software Version Downgrade Attack Prevention

When two successive updates to the software are issued, an adversary
may be able to use Attack 2 to cause the system to believe that the
RPMB holds the latest version number while it actually holds the
penultimate one. The adversary may then be able to cause the system
to downgrade to this penultimate software version and to maliciously
use the associated vulnerability for far longer than it should have.

Brute-force Attack Prevention

In this use scenario, the attacks described in this document do
not appear to provide any significant benefit to an adversary for a
reasonably implemented host software stack.

Updateable Secure Boot

If two successive updates to the boot code are attempted, with
the second one issued to mitigate a security vulnerability present in
the first one, the adversary may be able to cause the issuing host to
believe that the later version is installed when only the former one
was.

Secure Updateable State for TEE

There are a variety of use cases one can envision for an application
running in a TEE. In nearly all of them, it is important that the
application be able to trust the TEE storage to correctly write the
data that was sent, and not older uncommitted write.

Depending on the design of the file system the impact of the
vulnerability may be narrower or wider-ranging. Specifically, a non-
journaling file system which could already reach an inconsistent state
when faced with sudden power loss will obviously be vulnerable.

Proposed Mitigations

Consistency Model of RPMB
In the traditional shared-memory model of distributed systems, the
single weakest notion of register practically useful for building bigger
systems is a safe register. At the very least, a safe register needs to
provide confidence the property that read operations not concurrent
with write operations should return the most recent successfully
written value.

The previously described attacks show that the RPMB, as seen from
the perspective of the legitimate user, does not even provide a safe
register. Indeed, Attack 2 in particular, shows a scenario where a
subsequent read would return a different value from the most recently
written one.

In this section, we will provide a mechanism to address the two
previously described vulnerabilities and ensure that RPMB at each
address can be treated as a safe register.

Furthermore, for most applications, safety is typically an insufficient
property and stronger notions like regularity or atomicity/
linearizability are required. The proposed mitigation technique will
actually ensure regularity as well. For a system in need of atomicity

WHITE PAPER

 Replay Protected Memory Block (RPMB) - Protocol Vulnerabilities 5

and eventual termination of writes, standard file system consistency
techniques – two stage logging, journaling etc.. - need to be used by
the host system together with the proposed mitigation.

Initialization Sequence
We know that a write request contains a counter value and a MAC value
(among other things). The device checks that the counter value matches
with the current write counter, and that the MAC is valid. If both checks
pass, it increments the counter value and includes the new value in the
response message. If either of the checks fail, then the old counter value
is included.

We will use the counter value in the response messages to check
whether some write request was executed successfully or not.

We propose that an initialization sequence be run every time the host
recovers from a loss of state. The steps of the sequence are described
below. First, the host reads the value of the write counter; let's say it’s
Ct. Then, it runs a loop that tries to write some data to a dummy block
with counter value Ct. The loop runs until the host sees a value of Ct+1 in
the response message.

[1] Read the write counter value (say it’s Ct)

[2] DO

[3] Authenticated-Data-Write of some data to the dummy

 block with counter value Ct

[4] WHILE (counter value in response NOT EQUAL TO Ct + 1

The dummy block could be any block that is not normally used for
reading and writing. We later discuss what steps to take if such a block
is not available.

At the start of the initialization sequence, the attacker may have
uncommitted writes with counter value Ct or less. It could use them
later to launch attacks like the second one above. The purpose of the
initialization sequence is to invalidate the uncommitted writes by
incrementing the counter. Once the counter is incremented, attacker
cannot commit any of the uncommitted writes it has, thus preventing
problems later.

The loop above terminates when the host receives a response
message with an incremented counter value, so some write request
must have successfully executed. This write request may not be one
of the requests generated in the loop; it could even be one of the
uncommitted writes that the attacker holds. Either way, all the other
uncommitted writes of the attacker become invalid.

Once the initialization sequence is complete, it is safe to issue reads and

writes to the RPMB.

Reading and Writing
As the adversary does not have any valid uncommitted writes left,
reading is safe.

In order to write data D to a given address Adr, the following loop
should be executed, assuming the write counter value is Ct*.

[1] DO

[2] Authenticated-Data-Write of some data to the dummy

 block with counter value Ct

[3] WHILE (counter value in response NOT EQUAL TO Ct + 1

Note that the only write requests generated by the host with
counter value Ct* are the ones that write D to Adr. Thus, if the
counter value is incremented in the response message, it could
only be because one of these write requests have been executed
successfully. This means that D has been written to Adr.

The attacker could certainly interfere with the write process. It
could block a write request with Ct* from being executed, it could
try to commit one of its uncommitted writes, it could block the
response messages, etc. However, if a response message indeed
contains Ct*+1, then only a write request generated in the loop
could have successfully executed.

Attacks Reconsidered
Let us briefly see how the proposed mitigation strategy prevents
the two attacks we described earlier.

In the first attack, when the host gets a failure response from the
device, it assumes that the write attempt has failed. With the
new write procedure we have, the host will see that the response
message still contains the old counter value, so it will continue to
generate new write requests. The host will give up only when a
response message contains the new counter value, which ensures
that the write attempt has succeeded.

In the second attack, the host begins writing to Adr right after it
comes back up (recovers state). This allows the attacker to commit
an old write (REQ1) with some different data without the host
noticing it. In the proposed mitigation, the host will first run the
initialization sequence before it does any actual reading or writing.
Once the initialization sequence is complete, the attacker cannot
commit any of the uncommitted writes from before. The host will
try to write Data2 to Adr now with the help of the loop described
earlier, which ensures that Adr is populated with Data2 only.

Additional Concerns
Every time the host recovers state, like after a power failure, it must
run the initialization sequence before it attempts to do any real
reading or writing.

Once the initialization sequence is complete, writes should be
carried out one at a time. A new write operation should start only
after the previous one has finished. If multiple writes are carried out
at the same time (for the same RPMB region), then the attacker may
be able to launch some attacks.

WHITE PAPER

 Replay Protected Memory Block (RPMB) - Protocol Vulnerabilities 2579-810381-A00 November 2020

5601 Great Oaks Parkway
San Jose, CA 95119, USA

www.westerndigital.com

© 2020 Western Digital Corporation or its affiliates. All rights reserved. Western Digital and the Western Digital logo are registered trademarks or trademarks of Western
Digital Corporation or its affiliates in the US and/or other countries. All other marks are the property of their respective owners.

Frequently Asked Questions
Would the proposed mitigation lead to a significant increase in the number of times the write counter is incremented?

An adversary could cause the write counter to be incremented many times by forcing the initialization sequence to happen over and over
again. The counter, however, is a 32-bit value, so it can easily accommodate the extra write operations.

What should I do if no dummy-block is available?

If a dummy-block is unavailable, it is possible to modify the mitigation strategy to re-use an existing block (say B*) for the initialization
sequence. Instead of writing some data to B* directly, the host must first read from it (say the read data is D*). Then, the host should try to
write D* to B* in the same manner as an arbitrary value is written to the dummy-block in the mitigation strategy. After the loop terminates, the
host must perform one additional step. It should read B* to make sure that it still contains D* (since an attacker could commit an uncommitted
write from before with some different data). If it doesn’t, the host should take appropriate steps.

When should the initialization sequence be run?

The initialization sequence should be run whenever the host software may have lost state. It is necessary to run the initialization sequence to
guarantee that all adversary-held uncommitted writes are invalidated. Loss of state may happen for a variety of reasons like power-cycle, soft
reboot, software restart, etc.

References
¹ EMBEDDED MULTIMEDIACARD (e•MMC) e•MMC/CARD PRODUCT STANDARD, HIGH CAPACITY, including Reliable Write, Boot, Sleep Modes,
Dual Data Rate, Multiple Partitions Supports, Security Enhancement, Background Operation and High Priority Interrupt (MMCA, 4.41), March
2020

² Android Trusty Tee
https://source.android.com/security/trusty

³ Op-TEE
https://www.op-tee.org/

⁴ Western Digital Security Bulletin WDC-20008
https://www.westerndigital.com/support/productsecurity/wdc-20008-replay-attack-vulnerabilities-rpmb-protocol-applications

